COMPASS: Computing Platforms Seminar Series
Speaker: Cagri Balkesen (Oracle Labs)
Title: RAPID: In-Memory Analytical Query Processing Engine with Extreme Performance per Watt
Abstract:
Today, an ever increasing amount of transistors are packed into processor designs with extra features to support a broad range of applications. As a consequence, processors are becoming more and more complex and power hungry. At the same time, they only sustain an average performance for a wide variety of applications while not providing the best performance for specific applications. In this paper, we demonstrate through a carefully designed modern data processing system called RAPID and a simple, low-power processor specially tailored for data processing that at least an order of magnitude performance/power improvement in SQL processing can be achieved over a modern system running on today's complex processors. RAPID is designed from the ground up with hardware/ software co-design in mind to provide architecture-conscious extreme performance while consuming less power in comparison to the modern database systems. The paper presents in detail the design and implementation of RAPID, a relational, columnar, in-memory query processing engine supporting analytical query workloads.
Short bio:
Cagri completed his PhD in 2014 in the Systems Group at ETH Zurich supervised by Prof. Gustavo Alonso. His broader research interests are data processing on modern computing architectures as well as data stream processing. He holds a MSc in Computer Science of ETH Zurich and a BSc in Computer Engineering of the Middle East Technical University (METU) in Turkey. His PhD thesis at ETH Zurich addresses the design and implementation of in-memory joins on modern hardware architectures with massive multi-core parallelism and the paradigm shift towards in-memory processing. His work on main-memory hash joins received the Best-Paper Runner-Up award at IEEE ICDE 2013. Cagri was a recipient of Excellence Scholarship from ETH Zurich and he holds several US-patents based on his work at IBM and Oracle Labs.
-->